You will never think about buying UDFs ever again

Get access to high quality UDFs for free


Mathematical Methods UDFs

Calculus



Average Rate of Change (avgroc)

Function: Determines the average rate of change of a function

Syntax: avgroc(function, variable, lower, upper)

Example:

udf_img_example
udf_img

Average Value (avgval)

Function: Calculates the average value of a function

Syntax: avgval(function, variable, lower, upper)

Example:

udf_img_example
udf_img

Bound Area (boundarea)

Function: Determines the area bound by two graphs (if any) across their maximal domains

Syntax: boundarea(function1, function2, variable)

Example:

udf_img_example
udf_img

Bound Area with domain (boundaread)

Function: Determines the bound area between two functions in a restricted domain

Syntax: boundaread(function1, function2, variable, lower, upper)

Example:

udf_img_example
udf_img

Integral Solve (intsolve)

Function: Determines the answer for the integration multiple choice questions

Case 1: One integral given, find transformed integral

Syntax: intsolve({lower1,upper1, value1}, {transformations}, {lower2, upper2})

Example:

udf_img_example
udf_img

Case 2: Two integrals given, find untransformed integral

Syntax: intsolve({lower1, upper1, value1}, {lower2, upper2, value2}, {lower3, upper3})

Example:

udf_img_example
udf_img

Case 3: Two integrals given, find transformed integral

Syntax: intsolve({lower1, upper1, value1, lower2, upper2, value2}, {transformations}, {lower3, upper3})

Example:

udf_img_example
udf_img


Newton's Method (newtons)

Function: Estimates the root of a function using newton's method

Syntax: newtons(function, variable, x0, iterations)

Example:

udf_img_example
udf_img

Number of Roots (nroot)

Function: Determines the value(s) of a parameter required for a specified number of roots.

Syntax: nroot(polynomial, variable, parameter, number of roots)

Example:

udf_img_example
udf_img

Number of Stationary Points (nstp)

Function: Determines the value(s) of a parameter required for a specified number of stationary points.

Syntax: nstp(polynomial, variable, parameter, number of stationary points)

Example:

udf_img_example
udf_img

Number of Points of Inflection (npoi)

Function: Determines the value(s) of a parameter required for a specified number of points of inflection.

Syntax: npoi(polynomial, variable, parameter, number of points of inflection)

Example:

udf_img_example
udf_img

Points of Inflection (pois)

Function: Determines the points of inflection of a function

Syntax: pois(function, variable)

Example:

udf_img_example
udf_img

Sign Table (signtab)

Function: Uses a sign table to determine the stationary points of a function and their nature

Syntax: signtab(function, variable)

Example:

udf_img_example
udf_img

Stationary Points (stps)

Function: Determines the stationary points of a function

Syntax: stps(function, variable)

Example:

udf_img_example
udf_img

Tangent Solve (tangsolve)

Function: Determines the equation of the tangents to a function which pass through a specified point

Syntax: tangsolve(function, variable, x-coordinate, y-coordinate)

Example:

udf_img_example
udf_img

Trapezoid Approximation (trapapprox)

Function: Approximates an integral using the trapezoidal rule

Syntax: trapapprox(function, variable, lower, upper, number of trapezia)

Example:

udf_img_example
udf_img

Continuous Probability



Continuous Conditional Probability (ccondpr)

Function: Determines conditional probability for a continuous distribution

Case 1: Probability density function

Syntax: ccondpr(Probability Density Function, Lower Bound, Upper Bound, Condition 1, Condition 2)

Example:

udf_img_example
udf_img

Case 2: Normal Distribution

Syntax: ccondpr(Blank String, Mean, Standard Deviation, Condition 1, Condition 2)

Example:

udf_img_example
udf_img


Confidence Interval (confint)

Function: Determines a confidence interval as well as the z-score, margin of error and standard deviation

Syntax: confint(Sample Size,P_hat, . confidence)

Example:

udf_img_example
udf_img

Confidence Interval Solve (confintsolve)

Function: Determines the sample size, standard deviation or percentage confidence depending on the provided data

Syntax: confintsolve(Lower Bound, Upper Bound, Sample Size or Sample Standard Deviation or . Confidence)

Example:

udf_img_example
udf_img

Continuous Distribution Information (continfo)

Function: Determines the expected value, mean, variance, standard deviation of a continuous probability distribution

Syntax: continfo(function, variable, lower, upper)

Example:

udf_img_example
udf_img

Inverse Normal (invnormvals)

Function: Determines the left, right and centre possibilities for probability of a distribution

Syntax: invnormvals(mean, standard deviation, probability)

Example:

udf_img_example
udf_img

Normal Solve (normsolve)

Function: Determines the mean and standard deviation for lower and upper type questions

Case 1: Both Lower and Upper given

Syntax: normsolve(Lower, Probability of Lower, Upper, Probability of Upper)

Example:

udf_img_example
udf_img

Case 2: Lower and Mean given

Syntax: normsolve(Lower, Probability of Lower, Mean, Blank String)

Example:

udf_img_example
udf_img

Case 3: Lower and Standard Deviation given

Syntax: normsolve(Lower, Probability of Lower, Blank String, Standard Deviation)

Example:

udf_img_example
udf_img

Case 4: Upper and Mean given

Syntax: normsolve(Mean, Blank String, Upper, Probability of Upper)

Example:

udf_img_example
udf_img

Case 5: Upper and Standard Deviation given

Syntax: normsolve(Blank String, Standard Deviation, Upper, Probability of Upper)

Example:

udf_img_example
udf_img


Discrete Probability



Binomial Distribution Information (binominfo)

Function: Determines the expected value, variance, standard deviation, sample expected value, and sample standard deviation for a binomial distribution

Syntax: binominfo(Sample Size, Probability of Success)

Example:

udf_img_example
udf_img

Binomial Solve (binomsolve)

Function: Determines the number of trials required to achieve a certain probability

Syntax: binomsolve(outcome, probability of success, threshold value)

Example:

udf_img_example
udf_img

Discrete Conditional Probability (dcondpr)

Function: Determines conditional probability for a discrete distribution

Case 1: Binomial Distribution

Syntax: dcondpr(number of trials, probability of success, condition 1, condition 2)

Example:

udf_img_example
udf_img

Case 2: Discrete Probability Table

Syntax: dcondpr({List containing outcomes}, {List containing probabilities}, condition 1, condition 2)

Example:

udf_img_example
udf_img

Case 3: Probability Mass Function

Syntax: dcondpr({List containing outcomes}, PMF, condition 1, condition 2)

Example:

udf_img_example
udf_img


Hypergeometric Cumulative Probability Function (hypergeocdf)

Function: Determines the probability of selecting items without replacement, but over an interval of outcomes

Syntax: hypergeocdf(sample size, population size, number of successful items, lower bound, upper bound)

Example:

udf_img_example
udf_img

Hypergeometric Probability Density Function (hypergeopdf)

Function: Determines the probability of selecting items without replacement, but for specific outcomes

Syntax: hypergeopdf(sample size, population size, number of successful items, outcome)

Example:

udf_img_example
udf_img

Inverse Binomial (invbinomial)

Function: Determines the outcome required to achieve the probability

Syntax: invbinomial(number of trials, probability of success, known probability value)

Example:

udf_img_example
udf_img

Probability Table (prtable)

Function: Determines the mean, variance, standard deviation of a probability table

Syntax: prtable({outcomes}, {probabilities})

Example:

udf_img_example
udf_img

Sample Distribution Binomial (samplebinom)

Function: Determines the distribution for the sample proportion of a binomially distributed sample

Syntax: samplebinom(Sample Size, Probability of Success)

Example:

udf_img_example
udf_img

Sample Binomial Probability (samplebinompr)

Function: Determines the probability for the sample proportion for a binomially distributed sample

Syntax: samplebinompr(Sample Size, Probability of Success, Lower, Upper)

Example:

udf_img_example
udf_img

Sample Distribution Hypergeometric (samplehypergeo)

Function: Determines the distribution for the sample proportion of a hypergeometrically distributed sample

Syntax: samplehypergeo(Sample Size, Population Size, Number Successful)

Example:

udf_img_example
udf_img

Sample Hypergeometric probability (samplehyppr)

Function: Determines the probability for the sample proportion for a hypergeometrically distributed sample

Syntax: samplehyppr(Sample Size, Population Size, Number Successful, Lower, Upper)

Example:

udf_img_example
udf_img

Functions



Asymptotes (asymp)

Function: Determines the vertical and horizontal asymptotes of a function

Syntax: asymp(function, variable)

Example:

udf_img_example
udf_img

Composite Check (ccheck)

Function: Checks whether a composite function is valid, and the maximal domain required for the composite to be valid.

Syntax: ccheck(function 1, function 2)

Example:

udf_img_example
udf_img

Discriminant (discrim)

Function: Calculates the discriminant of an inputted quadratic expression

Syntax: discrim(quadratic Expr, variable)

Example:

udf_img_example
udf_img

Domain and Range (domrang)

Function: Determines the domain and range of a function

Syntax: domrang(function, variable)

Example:

udf_img_example
udf_img

Intercepts (intercepts)

Function: Finding the x and y intercepts of a function

Syntax: intercepts(function,variable)

Example:

udf_img_example
udf_img

Intersects (intersects)

Function: Determines the points of intersection of two functions across their maximal domains.

Syntax: intersects(function1,function2,variable)

Example:

udf_img_example
udf_img

Intersects with domain (intersectsd)

Function: Determines the points of intersection between two functions in a restricted domain

Syntax: intersectsd(function1, function2, variable, lower, upper)

Example:

udf_img_example
udf_img

Inverse Function (inverse)

Function: Determines the inverse of a function

Syntax: inverse(function, variable, x in domain of f)

Example:

udf_img_example
udf_img

Inverse Intersections (invints)

Function: Determines the values of a parameter, k, required for a function and its inverse function to have a certain number of intersections

Case 1: Square Root

Syntax: invints(function, number of intersections with inverse)

Example:

udf_img_example
udf_img

Case 2: Parabola

Syntax: invints(function, number of intersections with inverse) *You will be prompted to enter an initial condition

Example:

udf_img_example
udf_img

Case 3: Exponential

Syntax: invints(function, number of intersections with inverse)

Example:

udf_img_example
udf_img

Case 4: Logarithm

Syntax: invints(function, number of intersections with inverse)

Example:

udf_img_example
udf_img

Case 5: Hyperbola

Syntax: invints(function, number of intersections with inverse)

Example:

udf_img_example
udf_img

Case 6: Simple Cubic (Either 0 or 1 turning points)

Syntax: invints(function, number of intersections with inverse)

Example:

udf_img_example
udf_img

Case 7: Complicated Cubic (More than 1 turning point)

Syntax: invints(function, number of intersections with inverse) *You will be prompted to enter the domain

Example:

udf_img_example
udf_img


Angle Between Two Lines (lineang)

Function: Determines the angle between two lines in degrees (Assumes CAS in raidans mode)

Syntax: lineang(Line 1, Line 2, Variable)

Example:

udf_img_example
udf_img

Unique, None, Infinite Solution (linesolve)

Function: Determines when two linear equations will have an unique, none or infinitely many solutions. Note: Equations must be in the form: Ax + By = C , rather than Ax + By + C = 0

Syntax: linesolve(Equation1, Equation2)

Example:

udf_img_example
udf_img

Property Check (pcheck)

Function: Determines which function satisfies a specific property

Syntax: pcheck(function, variable, LHS, RHS)

Example:

udf_img_example
udf_img

Point Information (pointinfo)

Function: Determines the gradient, perpendicular gradient, line, x and y intercepts of a line, midpoint, distance

Syntax: pointinfo(x1, y1, x2, y2)

Example:

udf_img_example
udf_img

Polynomial Fit (polyfit)

Function: Determines the equation of a polynomial which passes through a set of points.

Syntax: polyfit({x1, y1, x2, y2, ...})

Example:

udf_img_example
udf_img

Transformations (transform)

Function: Determines the transformed function after applying certain transformations

Syntax: transform(function, {transformations})

Example:

udf_img_example
udf_img

Miscellaneous



Column Augment (ca)

Function: Converts answer into easily readable matrix form

Case 1: One Variable

Syntax: surfarea(Function, t, Lower Bound, Upper Bound)

Example:

udf_img_example
udf_img

Case 2: Multiple Variables (Up to 5)

Syntax: ca(Ans, {var1, var2,..., var5}

Example:

udf_img_example
udf_img


Domain Solve (dsolve)

Function: Solves equations in a restricted domain

Syntax: dsolve(Equation, Variable, Lower Bound, Upper Bound)

Example:

udf_img_example
udf_img

Graph Information (graphinfo)

Function: Determines the endpoints, x-intercepts, y-intercepts, stationary points, points of inflection of a function

Case 1: Restricted Domain

Syntax: graphinfo(Function, Variable, Lower Bound, Upper Bound)

Example:

udf_img_example
udf_img

Case 2: Across Maximal Domain

Syntax: graphinfo(Function, Variable, Blank String, Random Character)

Example:

udf_img_example
udf_img


Rewrite (rr)

Function: Gets the right hand side of an equation/answer

Syntax: rr(Equation/Answer)

Example:

udf_img_example
udf_img

Triganometric Solve (tsolve)

Function: Gives exact values of circular function equations (Ones which TiNspire cannot properly solve on its own)

Case 1: Trigonometric Equation

Syntax: tsolve(Equation, Variable, Lower Bound, Upper Bound)

Example:

udf_img_example
udf_img

Case 2: Trigonometric Inequality

Syntax: tsolve(Inequality, Variable, Lower Bound, Upper Bound)

Example:

udf_img_example
udf_img



Specialist Mathematics UDFs

Calculus



Arc Length (arclength)

Function: Determines the arc length for parametric curve

Case 1: Function

Syntax: arclength(Function, Variable, Lower Bound, Upper Bound)

Example:

udf_img_example
udf_img

Case 2: Parametric Equation

Syntax: arclength(Vector, Variable, Lower, Upper)

Example:

udf_img_example
udf_img


Bound Volume (boundvol)

Function: Determines the volume of the solid formed by the region(s) bound by two curves

Syntax: boundvol(Function 1, Function 2, Variable)

Example:

udf_img_example
udf_img

Bound Volume Domain (boundvold)

Function: Determines the volume of the solid formed by the region(s) bound by two curves in a restricted domain

Syntax: boundvold(Function 1, Function 2, Variable, Lower Bound, Upper Bound)

Example:

udf_img_example
udf_img

Euler's Method (eulers)

Function: Uses euler's method to estimate the solution to a differential equation

Syntax: eulers(Differential Equation, Independent Variable, x0, xn, y0, step-size)

Example:

udf_img_example
udf_img

Mixing Problems (mix)

Function: Determines the differential equation of the mixing problem

Syntax: mix() (You will be prompted for inputs)

Example:

udf_img_example
udf_img

Rational Function (rational)

Function: Determines holes, straight line asymptotes, and oblique asymptotes of a rational function.

Syntax: rational(numerator, denominator, variable)

Example:

udf_img_example
udf_img

Surface Area of Solid (surfarea)

Function: Determines the surface area of a solid of revolution

Case 1: Function of x rotated about x-axis

Syntax: surfarea(Function, Variable, Lower Bound, Upper Bound)

Example:

udf_img_example
udf_img

Case 2: Function of y rotated about y-axis

Syntax: surfarea(Function, Variable, Lower Bound, Upper Bound)

Example:

udf_img_example
udf_img

Case 3: Function of x rotated about y-axis

Syntax: surfarea(Function, y, x-lower, x-upper)

Example:

udf_img_example
udf_img

Case 4: Parametric Equation

Syntax: surfarea(Function, t, Lower Bound, Upper Bound)

Example:

udf_img_example
udf_img


Complex Numbers



De Moivre's Theorem (demoiv)

Function: Determines the solutions to roots of unity questions

Syntax: demoiv(Power , Number)

Example:

udf_img_example
udf_img

Circle Locus First Form (locicir1)

Function: Determines cartesian equation of circle loci in the form |z - a| = r

Syntax: locicir1(Point , Radius)

Example:

udf_img_example
udf_img

Circle Locus Second Form (locicir2)

Function: Determines cartesian equation of circle loci in the form |z - a| = k|z - b|

Syntax: locicir2(Point 1, Point 2, k)

Example:

udf_img_example
udf_img

Ellipse Locus (lociellp)

Function: Determines cartesian equation of ellipse loci

Syntax: lociellp(Point 1, Point 2, Length)

Example:

udf_img_example
udf_img

Hyperbola Locus (locihyp)

Function: Determines cartesian equation of hyperbola loci

Syntax: locihyp(Point 1, Point 2, Length)

Example:

udf_img_example
udf_img

Line Locus (lociline)

Function: Determines cartesian equation of line in the form |z - a| = |z - b|

Syntax: lociline(Point 1, Point 2)

Example:

udf_img_example
udf_img

Quadratic Roots (quadroots)

Function: Determines quadratic roots of a complex number algebraically

Syntax: quadroots(Number)

Example:

udf_img_example
udf_img

Ray (ray)

Function: Determines the cartesian equation of a ray given a point and an angle

Syntax: ray(Point, Angle)

Example:

udf_img_example
udf_img

Kinematics



Collision Detector (collision)

Function: Determines whether two particles collide and where their paths intersect

Syntax: collision(Position Vector 1, Position Vector 2)

Example:

udf_img_example
udf_img

Projectile Motion (projm)

Function: Determines the accleration, velocity, position, max height, max displacement, return speed of a particle

Syntax: projm(Initial Position, Initial Velocity, Launch Angle, Initial Acceleration)

Example:

udf_img_example
udf_img

Constant Acceleration Equations (suvat)

Function: Enter 3 known values and 2 unknown variables, it will determine the unknowns

Syntax: suvat(s (displacement), u (initial velocity), v (final velocity), a (acceleration), t (time))

Example:

udf_img_example
udf_img

Vectors



Unit Vector Bisector (bisec)

Function: Determines the unit vector which bisects the angle between two vectors

Syntax: bisec(vector 1, vector 2)

Example:

udf_img_example
udf_img

Colinear (colin)

Function: Determines value(s) of a variable required for points to be collinear

Syntax: colin(Point 1, Point 2, Point 3)

Example:

udf_img_example
udf_img

Linear Dependence (lindep)

Function: Determines value(s) of a variable required for 3 vectors to be linearly dependent

Syntax: lindep(Vector 1, Vector 2, Vector 3)

Example:

udf_img_example
udf_img

Angle between Vectors (vecang)

Function: Determines the angle between the two inputted vectors.

Syntax: vecang(Vector1, Vector2)

Example:

udf_img_example
udf_img

Vector Projection (vproj)

Function: Determines vector, scalar resolute, & angle for two inputted vectors

Syntax: vproj(Vector 1, Vector 2)

Example:

udf_img_example
udf_img

Linear Algebra



Line Cartesian to Vector (car2vecline)

Function: Converts equation of line from cartesian form to vector form

Syntax: car2vecline(line Cartesian)

Example:

udf_img_example
udf_img

Plane Cartesian to Vector (car2vecplane)

Function: Converts equation of plane from cartesian form to vector form

Syntax: car2vecplane(Plane Cartesian)

Example:

udf_img_example
udf_img

Line Vector to Cartesian (vec2carline)

Function: Converts equation of line from vector form to cartesian form

Syntax: vec2carline(line Vector)

Example:

udf_img_example
udf_img

Plane Vector to Cartesian (vec2carplane)

Function: Converts equation of plane from vector form to cartesian form

Syntax: vec2carplane(Plane Vector)

Example:

udf_img_example
udf_img

Minimum Distance between 2 lines (dist2l)

Function: Determines minimum distance between two lines

Syntax: dist2l(Line Vector 1, Line Vector 2)

Example:

udf_img_example
udf_img

Minimum Distance between 2 planes (dist2pl)

Function: Determines minimum distance between two planes

Syntax: dist2pl(Plane Cartesian 1, Plane Cartesian 2)

Example:

udf_img_example
udf_img

Minimum Distance between line and plane (distlpl)

Function: Determines the minimum distance between a plane and line

Syntax: distlpl(Line Vector, Plane Cartesian)

Example:

udf_img_example
udf_img

Minimum Distance between line and point (distlp)

Function: Determines minimum distance between a line and point

Syntax: distlp(Line Vector, Point)

Example:

udf_img_example
udf_img

Minimum Distance between plane and point (distplp)

Function: Determines minimum distance between a plane and point

Syntax: distlp(Plane Equation, Point)

Example:

udf_img_example
udf_img

Intersection between 2 lines (ints2l)

Function: Determines the point of intersection & angle between two lines

Syntax: ints2l(Line Vector 1, Line Vector 2)

Example:

udf_img_example
udf_img

Intersection between 2 planes (ints2pl)

Function: Determines the line of intersection & angle between two planes

Syntax: ints2pl(Plane Cartesian 1, Plane Cartesian 2)

Example:

udf_img_example
udf_img

Intersection between plane and line (intslpl)

Function: Determines the point of intersection & angle between line and plane

Syntax: intslpl(Line Vector, Plane Cartesian)

Example:

udf_img_example
udf_img

Create line with 2 points (line2p)

Function: Determines the equation of a line given two points

Syntax: line2p(Point 1, Point 2)

Example:

udf_img_example
udf_img

Create line with direction vector and point (linedp)

Function: Determines the equation of a line given a direction vector and point

Syntax: linedp(Direction Vector, Point)

Example:

udf_img_example
udf_img

Create plane with 3 points (plane3p)

Function: Determines the equation of a plane given three points

Syntax: plane3p(Point 1, Point 2, Point 3)

Example:

udf_img_example
udf_img

Create plane with normal and point (planenp)

Function: Determines the equation of a plane given a normal vector and a point

Syntax: planenp(Normal Vector, Point)

Example:

udf_img_example
udf_img

Plane formed by intersecting lines (planeintl)

Function: Determines the equation of the plane formed by two intersecting lines

Syntax: planeintl(Line Vector 1, Line Vector 2)

Example:

udf_img_example
udf_img

Probability



Sample Mean Confidence Interval (confint)

Function: Determines the confidence interval for the sample mean

Syntax: confint(Sample Mean, Population Standard Deviation, Sample Size, . confidence)

Example:

udf_img_example
udf_img

Hypothesis Testing (hyptest)

Function: Determines whether the null hypothesis should be rejected by calculating p-values

Syntax: hyptest() (You will be prompted for inputs)

Example:

udf_img_example
udf_img

Probability of Error (prerror)

Function: Determines the probability of Type I and Type II errors occuring

Syntax: prerror() (You will be prompted for inputs)

Example:

udf_img_example
udf_img

p-value (pval)

Function: Determines the p-value of a hypothesis test

Syntax: pval() (You will be prompted for inputs)

Example:

udf_img_example
udf_img


Download

UDF Files:

Instructions on how to install the UDFs are available in Contact Us under "How do I install the UDFs?"

Note: Latest version is v3.1 for SM and v3.2 for MM. Please ensure that the version you install is up to date. Important: Due to limited time the new UDFs have not been extensively tested.

Latest Changes (v2.1 - v3.2)
  • Note: MM3&4 UDFs are intended for MM3&4, inputting SM3&4 functions may result in unexpected behaviour

  • Added new UDFs sm_calc\para_tangnorm, sm_calc\para_2nd_deriv, sm_calc\para_closep, sm_comp\segment, sm_calc\conic, mm_misc\triginfo, mm_func\bisec

  • Added warnings to new UDFs, and UDFs with bugs.

  • Fixed working out for sm_pr\confint and sm_calc\para_2nd_deriv, accidentally duplicated values (oops)

  • Bug fix to mm_calc\boundarea fixed issue where g(x) being greater than f(x) gave weird value

  • Bug fixes to sm_linalg\intslpl and sm_linalg\ints2pl (fixed issues when letting z = t gave weird solution)

  • Bug fix to sm_linalg\dist2l (fixed parallel line detection)

  • Bug fix to sm_kin\suvat and sm_pr\prerror (fixed working out so it formated correctly)

  • Added working out to sm_linalg\ints2pl

  • Added E(X), Var(X), Sd(X) to mm_dpr/samplebinom and mm_dpr/samplehypergeo

  • Made sm_linalg\ints UDFs find acute angle, as that's what questions usually ask for

UDF Guides:

Mathematical Methods UDF Guide

Specialist Mathematics UDF Guide

Note: The latest version is v3.1 for MM and v3.0 for SM Please ensure that the version you install is up to date.

Version Updates & Mailing List

New version v3: Added some extra requested UDFs. However, due to limited time the new UDFs have not been extensively tested.

Join our mailing list so you don't miss the latest updates :D sign up here

Program Bugs:

While the vast majority of the programs work fine, it's difficult for us to determine every single bug.

If you encounter any issues or difficulties, please contact us and we will try to help you out.

Bugs Unresolved:
  • Inverse intersections (invints) sometimes does not give accurate included/excluded values due to CAS approximation. Please make sure to verify the results graphically

  • nroots, nstps, npois don't work for non-polynomial functions, documentation has been updated to reflect this.

  • Trig Solve (tsolve) may provide inaccurate inqualities if a function in the equation has asymptotes.

  • Continous Information (continfo) sometimes may provide a weird (obviously wrong) answer for median sometimes idk why ... but then it works again if you reset CAS ???

  • Domain and Range function does not handle parameters well

  • Domain and Range may give inaccurate results if the domain is not restricted for complicated functions.

  • Domain and Range function does not handle rational functions well. Beware of auto-simplification.

  • Domain and Range function may round undefined endpoints into defined endpoints.

bot-icon
  • Loading chatbot ...

send-button