You will never think about buying UDFs ever again

Get access to high quality UDFs for free


Mathematical Methods UDFs

Calculus



Average Rate of Change (avgroc)

Function: Determines the average rate of change of a function

Syntax: avgroc(function, variable, lower, upper)

Example:

udf_img_example
udf_img

Average Value (avgval)

Function: Calculates the average value of a function

Syntax: avgval(function, variable, lower, upper)

Example:

udf_img_example
udf_img

Bound Area (boundarea)

Function: Determines the area bound by two graphs (if any) across their maximal domains

Syntax: boundarea(function1, function2, variable)

Example:

udf_img_example
udf_img

Bound Area with domain (boundaread)

Function: Determines the bound area between two functions in a restricted domain

Syntax: boundaread(function1, function2, variable, lower, upper)

Example:

udf_img_example
udf_img

Integral Solve (intsolve)

Function: Determines the answer for the integration multiple choice questions

Case 1: One integral given, find transformed integral

Syntax: intsolve({lower1,upper1, value1}, {transformations}, {lower2, upper2})

Example:

udf_img_example
udf_img

Case 2: Two integrals given, find untransformed integral

Syntax: intsolve({lower1, upper1, value1}, {lower2, upper2, value2}, {lower3, upper3})

Example:

udf_img_example
udf_img

Case 3: Two integrals given, find transformed integral

Syntax: intsolve({lower1, upper1, value1, lower2, upper2, value2}, {transformations}, {lower3, upper3})

Example:

udf_img_example
udf_img


Newton's Method (newtons)

Function: Estimates the root of a function using newton's method

Syntax: newtons(function, variable, x0, iterations)

Example:

udf_img_example
udf_img

Number of Roots (nroot)

Function: Determines the value(s) of a parameter required for a specified number of roots.

Syntax: nroot(polynomial, variable, parameter, number of roots)

Example:

udf_img_example
udf_img

Number of Stationary Points (nstp)

Function: Determines the value(s) of a parameter required for a specified number of stationary points.

Syntax: nstp(polynomial, variable, parameter, number of stationary points)

Example:

udf_img_example
udf_img

Number of Points of Inflection (npoi)

Function: Determines the value(s) of a parameter required for a specified number of points of inflection.

Syntax: npoi(polynomial, variable, parameter, number of points of inflection)

Example:

udf_img_example
udf_img

Points of Inflection (pois)

Function: Determines the points of inflection of a function

Syntax: pois(function, variable)

Example:

udf_img_example
udf_img

Sign Table (signtab)

Function: Uses a sign table to determine the stationary points of a function and their nature

Syntax: signtab(function, variable)

Example:

udf_img_example
udf_img

Stationary Points (stps)

Function: Determines the stationary points of a function

Syntax: stps(function, variable)

Example:

udf_img_example
udf_img

Tangent Solve (tangsolve)

Function: Determines the equation of the tangents to a function which pass through a specified point

Syntax: tangsolve(function, variable, x-coordinate, y-coordinate)

Example:

udf_img_example
udf_img

Trapezoid Approximation (trapapprox)

Function: Approximates an integral using the trapezoidal rule

Syntax: trapapprox(function, variable, lower, upper, number of trapezia)

Example:

udf_img_example
udf_img

Continuous Probability



Continuous Conditional Probability (ccondpr)

Function: Determines conditional probability for a continuous distribution

Case 1: Probability density function

Syntax: ccondpr(Probability Density Function, Lower Bound, Upper Bound, Condition 1, Condition 2)

Example:

udf_img_example
udf_img

Case 2: Normal Distribution

Syntax: ccondpr(Blank String, Mean, Standard Deviation, Condition 1, Condition 2)

Example:

udf_img_example
udf_img


Confidence Interval (confint)

Function: Determines a confidence interval as well as the z-score, margin of error and standard deviation

Syntax: confint(Sample Size,P_hat, . confidence)

Example:

udf_img_example
udf_img

Confidence Interval Solve (confintsolve)

Function: Determines the sample size, standard deviation or percentage confidence depending on the provided data

Syntax: confintsolve(Lower Bound, Upper Bound, Sample Size or Sample Standard Deviation or . Confidence)

Example:

udf_img_example
udf_img

Continuous Distribution Information (continfo)

Function: Determines the expected value, mean, variance, standard deviation of a continuous probability distribution

Syntax: continfo(function, variable, lower, upper)

Example:

udf_img_example
udf_img

Inverse Normal (invnormvals)

Function: Determines the left, right and centre possibilities for probability of a distribution

Syntax: invnormvals(mean, standard deviation, probability)

Example:

udf_img_example
udf_img

Normal Solve (normsolve)

Function: Determines the mean and standard deviation for lower and upper type questions

Case 1: Both Lower and Upper given

Syntax: normsolve(Lower, Probability of Lower, Upper, Probability of Upper)

Example:

udf_img_example
udf_img

Case 2: Lower and Mean given

Syntax: normsolve(Lower, Probability of Lower, Mean, Blank String)

Example:

udf_img_example
udf_img

Case 3: Lower and Standard Deviation given

Syntax: normsolve(Lower, Probability of Lower, Blank String, Standard Deviation)

Example:

udf_img_example
udf_img

Case 4: Upper and Mean given

Syntax: normsolve(Mean, Blank String, Upper, Probability of Upper)

Example:

udf_img_example
udf_img

Case 5: Upper and Standard Deviation given

Syntax: normsolve(Blank String, Standard Deviation, Upper, Probability of Upper)

Example:

udf_img_example
udf_img


Discrete Probability



Binomial Distribution Information (binominfo)

Function: Determines the expected value, variance, standard deviation, sample expected value, and sample standard deviation for a binomial distribution

Syntax: binominfo(Sample Size, Probability of Success)

Example:

udf_img_example
udf_img

Binomial Solve (binomsolve)

Function: Determines the number of trials required to achieve a certain probability

Syntax: binomsolve(outcome, probability of success, threshold value)

Example:

udf_img_example
udf_img

Discrete Conditional Probability (dcondpr)

Function: Determines conditional probability for a discrete distribution

Case 1: Binomial Distribution

Syntax: dcondpr(number of trials, probability of success, condition 1, condition 2)

Example:

udf_img_example
udf_img

Case 2: Discrete Probability Table

Syntax: dcondpr({List containing outcomes}, {List containing probabilities}, condition 1, condition 2)

Example:

udf_img_example
udf_img

Case 3: Probability Mass Function

Syntax: dcondpr({List containing outcomes}, PMF, condition 1, condition 2)

Example:

udf_img_example
udf_img


Hypergeometric Cumulative Probability Function (hypergeocdf)

Function: Determines the probability of selecting items without replacement, but over an interval of outcomes

Syntax: hypergeocdf(sample size, population size, number of successful items, lower bound, upper bound)

Example:

udf_img_example
udf_img

Hypergeometric Probability Density Function (hypergeopdf)

Function: Determines the probability of selecting items without replacement, but for specific outcomes

Syntax: hypergeopdf(sample size, population size, number of successful items, outcome)

Example:

udf_img_example
udf_img

Inverse Binomial (invbinomial)

Function: Determines the outcome required to achieve the probability

Syntax: invbinomial(number of trials, probability of success, known probability value)

Example:

udf_img_example
udf_img

Probability Table (prtable)

Function: Determines the mean, variance, standard deviation of a probability table

Syntax: prtable({outcomes}, {probabilities})

Example:

udf_img_example
udf_img

Sample Distribution Binomial (samplebinom)

Function: Determines the distribution for the sample proportion of a binomially distributed sample

Syntax: samplebinom(Sample Size, Probability of Success)

Example:

udf_img_example
udf_img

Sample Binomial Probability (samplebinompr)

Function: Determines the probability for the sample proportion for a binomially distributed sample

Syntax: samplebinompr(Sample Size, Probability of Success, Lower, Upper)

Example:

udf_img_example
udf_img

Sample Distribution Hypergeometric (samplehypergeo)

Function: Determines the distribution for the sample proportion of a hypergeometrically distributed sample

Syntax: samplehypergeo(Sample Size, Population Size, Number Successful)

Example:

udf_img_example
udf_img

Sample Hypergeometric probability (samplehyppr)

Function: Determines the probability for the sample proportion for a hypergeometrically distributed sample

Syntax: samplehyppr(Sample Size, Population Size, Number Successful, Lower, Upper)

Example:

udf_img_example
udf_img

Functions



Asymptotes (asymp)

Function: Determines the vertical and horizontal asymptotes of a function

Syntax: asymp(function, variable)

Example:

udf_img_example
udf_img

Composite Check (ccheck)

Function: Checks whether a composite function is valid, and the maximal domain required for the composite to be valid.

Syntax: ccheck(function 1, function 2)

Example:

udf_img_example
udf_img

Discriminant (discrim)

Function: Calculates the discriminant of an inputted quadratic expression

Syntax: discrim(quadratic Expr, variable)

Example:

udf_img_example
udf_img

Domain and Range (domrang)

Function: Determines the domain and range of a function

Syntax: domrang(function, variable)

Example:

udf_img_example
udf_img

Intercepts (intercepts)

Function: Finding the x and y intercepts of a function

Syntax: intercepts(function,variable)

Example:

udf_img_example
udf_img

Intersects (intersects)

Function: Determines the points of intersection of two functions across their maximal domains.

Syntax: intersects(function1,function2,variable)

Example:

udf_img_example
udf_img

Intersects with domain (intersectsd)

Function: Determines the points of intersection between two functions in a restricted domain

Syntax: intersectsd(function1, function2, variable, lower, upper)

Example:

udf_img_example
udf_img

Inverse Function (inverse)

Function: Determines the inverse of a function

Syntax: inverse(function, variable, x in domain of f)

Example:

udf_img_example
udf_img

Inverse Intersections (invints)

Function: Determines the values of a parameter, k, required for a function and its inverse function to have a certain number of intersections

Case 1: Square Root

Syntax: invints(function, number of intersections with inverse)

Example:

udf_img_example
udf_img

Case 2: Parabola

Syntax: invints(function, number of intersections with inverse) *You will be prompted to enter an initial condition

Example:

udf_img_example
udf_img

Case 3: Exponential

Syntax: invints(function, number of intersections with inverse)

Example:

udf_img_example
udf_img

Case 4: Logarithm

Syntax: invints(function, number of intersections with inverse)

Example:

udf_img_example
udf_img

Case 5: Hyperbola

Syntax: invints(function, number of intersections with inverse)

Example:

udf_img_example
udf_img

Case 6: Simple Cubic (Either 0 or 1 turning points)

Syntax: invints(function, number of intersections with inverse)

Example:

udf_img_example
udf_img

Case 7: Complicated Cubic (More than 1 turning point)

Syntax: invints(function, number of intersections with inverse) *You will be prompted to enter the domain

Example:

udf_img_example
udf_img


Angle Between Two Lines (lineang)

Function: Determines the angle between two lines in degrees (Assumes CAS in raidans mode)

Syntax: lineang(Line 1, Line 2, Variable)

Example:

udf_img_example
udf_img

Unique, None, Infinite Solution (linesolve)

Function: Determines when two linear equations will have an unique, none or infinitely many solutions. Note: Equations must be in the form: Ax + By = C , rather than Ax + By + C = 0

Syntax: linesolve(Equation1, Equation2)

Example:

udf_img_example
udf_img

Property Check (pcheck)

Function: Determines which function satisfies a specific property

Syntax: pcheck(function, variable, LHS, RHS)

Example:

udf_img_example
udf_img

Point Information (pointinfo)

Function: Determines the gradient, perpendicular gradient, line, x and y intercepts of a line, midpoint, distance

Syntax: pointinfo(x1, y1, x2, y2)

Example:

udf_img_example
udf_img

Polynomial Fit (polyfit)

Function: Determines the equation of a polynomial which passes through a set of points.

Syntax: polyfit({x1, y1, x2, y2, ...})

Example:

udf_img_example
udf_img

Transformations (transform)

Function: Determines the transformed function after applying certain transformations

Syntax: transform(function, {transformations})

Example:

udf_img_example
udf_img

Miscellaneous



Column Augment (ca)

Function: Converts answer into easily readable matrix form

Case 1: One Variable

Syntax: surfarea(Function, t, Lower Bound, Upper Bound)

Example:

udf_img_example
udf_img

Case 2: Multiple Variables (Up to 5)

Syntax: ca(Ans, {var1, var2,..., var5}

Example:

udf_img_example
udf_img


Domain Solve (dsolve)

Function: Solves equations in a restricted domain

Syntax: dsolve(Equation, Variable, Lower Bound, Upper Bound)

Example:

udf_img_example
udf_img

Graph Information (graphinfo)

Function: Determines the endpoints, x-intercepts, y-intercepts, stationary points, points of inflection of a function

Case 1: Restricted Domain

Syntax: graphinfo(Function, Variable, Lower Bound, Upper Bound)

Example:

udf_img_example
udf_img

Case 2: Across Maximal Domain

Syntax: graphinfo(Function, Variable, Blank String, Random Character)

Example:

udf_img_example
udf_img


Rewrite (rr)

Function: Gets the right hand side of an equation/answer

Syntax: rr(Equation/Answer)

Example:

udf_img_example
udf_img

Triganometric Solve (tsolve)

Function: Gives exact values of circular function equations (Ones which TiNspire cannot properly solve on its own)

Case 1: Trigonometric Equation

Syntax: tsolve(Equation, Variable, Lower Bound, Upper Bound)

Example:

udf_img_example
udf_img

Case 2: Trigonometric Inequality

Syntax: tsolve(Inequality, Variable, Lower Bound, Upper Bound)

Example:

udf_img_example
udf_img



Specialist Mathematics UDFs

Calculus



Arc Length (arclength)

Function: Determines the arc length for parametric curve

Case 1: Function

Syntax: arclength(Function, Variable, Lower Bound, Upper Bound)

Example:

udf_img_example
udf_img

Case 2: Parametric Equation

Syntax: arclength(Vector, Variable, Lower, Upper)

Example:

udf_img_example
udf_img


Bound Volume (boundvol)

Function: Determines the volume of the solid formed by the region(s) bound by two curves

Syntax: boundvol(Function 1, Function 2, Variable)

Example:

udf_img_example
udf_img

Bound Volume Domain (boundvold)

Function: Determines the volume of the solid formed by the region(s) bound by two curves in a restricted domain

Syntax: boundvold(Function 1, Function 2, Variable, Lower Bound, Upper Bound)

Example:

udf_img_example
udf_img

Euler's Method (eulers)

Function: Uses euler's method to estimate the solution to a differential equation

Syntax: eulers(Differential Equation, Independent Variable, x0, xn, y0, step-size)

Example:

udf_img_example
udf_img

Mixing Problems (mix)

Function: Determines the differential equation of the mixing problem

Syntax: mix() (You will be prompted for inputs)

Example:

udf_img_example
udf_img

Rational Function (rational)

Function: Determines holes, straight line asymptotes, and oblique asymptotes of a rational function.

Syntax: rational(numerator, denominator, variable)

Example:

udf_img_example
udf_img

Surface Area of Solid (surfarea)

Function: Determines the surface area of a solid of revolution

Case 1: Function of x rotated about x-axis

Syntax: surfarea(Function, Variable, Lower Bound, Upper Bound)

Example:

udf_img_example
udf_img

Case 2: Function of y rotated about y-axis

Syntax: surfarea(Function, Variable, Lower Bound, Upper Bound)

Example:

udf_img_example
udf_img

Case 3: Function of x rotated about y-axis

Syntax: surfarea(Function, y, x-lower, x-upper)

Example:

udf_img_example
udf_img

Case 4: Parametric Equation

Syntax: surfarea(Function, t, Lower Bound, Upper Bound)

Example:

udf_img_example
udf_img


Complex Numbers



De Moivre's Theorem (demoiv)

Function: Determines the solutions to roots of unity questions

Syntax: demoiv(Power , Number)

Example:

udf_img_example
udf_img

Circle Locus First Form (locicir1)

Function: Determines cartesian equation of circle loci in the form |z - a| = r

Syntax: locicir1(Point , Radius)

Example:

udf_img_example
udf_img

Circle Locus Second Form (locicir2)

Function: Determines cartesian equation of circle loci in the form |z - a| = k|z - b|

Syntax: locicir2(Point 1, Point 2, k)

Example:

udf_img_example
udf_img

Ellipse Locus (lociellp)

Function: Determines cartesian equation of ellipse loci

Syntax: lociellp(Point 1, Point 2, Length)

Example:

udf_img_example
udf_img

Hyperbola Locus (locihyp)

Function: Determines cartesian equation of hyperbola loci

Syntax: locihyp(Point 1, Point 2, Length)

Example:

udf_img_example
udf_img

Line Locus (lociline)

Function: Determines cartesian equation of line in the form |z - a| = |z - b|

Syntax: lociline(Point 1, Point 2)

Example:

udf_img_example
udf_img

Quadratic Roots (quadroots)

Function: Determines quadratic roots of a complex number algebraically

Syntax: quadroots(Number)

Example:

udf_img_example
udf_img

Ray (ray)

Function: Determines the cartesian equation of a ray given a point and an angle

Syntax: ray(Point, Angle)

Example:

udf_img_example
udf_img

Kinematics



Collision Detector (collision)

Function: Determines whether two particles collide and where their paths intersect

Syntax: collision(Position Vector 1, Position Vector 2)

Example:

udf_img_example
udf_img

Projectile Motion (projm)

Function: Determines the accleration, velocity, position, max height, max displacement, return speed of a particle

Syntax: projm(Initial Position, Initial Velocity, Launch Angle, Initial Acceleration)

Example:

udf_img_example
udf_img

Constant Acceleration Equations (suvat)

Function: Enter 3 known values and 2 unknown variables, it will determine the unknowns

Syntax: suvat(s (displacement), u (initial velocity), v (final velocity), a (acceleration), t (time))

Example:

udf_img_example
udf_img

Vectors



Unit Vector Bisector (bisec)

Function: Determines the unit vector which bisects the angle between two vectors

Syntax: bisec(vector 1, vector 2)

Example:

udf_img_example
udf_img

Colinear (colin)

Function: Determines value(s) of a variable required for points to be collinear

Syntax: colin(Point 1, Point 2, Point 3)

Example:

udf_img_example
udf_img

Linear Dependence (lindep)

Function: Determines value(s) of a variable required for 3 vectors to be linearly dependent

Syntax: lindep(Vector 1, Vector 2, Vector 3)

Example:

udf_img_example
udf_img

Angle between Vectors (vecang)

Function: Determines the angle between the two inputted vectors.

Syntax: vecang(Vector1, Vector2)

Example:

udf_img_example
udf_img

Vector Projection (vproj)

Function: Determines vector, scalar resolute, & angle for two inputted vectors

Syntax: vproj(Vector 1, Vector 2)

Example:

udf_img_example
udf_img

Linear Algebra



Line Cartesian to Vector (car2vecline)

Function: Converts equation of line from cartesian form to vector form

Syntax: car2vecline(line Cartesian)

Example:

udf_img_example
udf_img

Plane Cartesian to Vector (car2vecplane)

Function: Converts equation of plane from cartesian form to vector form

Syntax: car2vecplane(Plane Cartesian)

Example:

udf_img_example
udf_img

Line Vector to Cartesian (vec2carline)

Function: Converts equation of line from vector form to cartesian form

Syntax: vec2carline(line Vector)

Example:

udf_img_example
udf_img

Plane Vector to Cartesian (vec2carplane)

Function: Converts equation of plane from vector form to cartesian form

Syntax: vec2carplane(Plane Vector)

Example:

udf_img_example
udf_img

Minimum Distance between 2 lines (dist2l)

Function: Determines minimum distance between two lines

Syntax: dist2l(Line Vector 1, Line Vector 2)

Example:

udf_img_example
udf_img

Minimum Distance between 2 planes (dist2pl)

Function: Determines minimum distance between two planes

Syntax: dist2pl(Plane Cartesian 1, Plane Cartesian 2)

Example:

udf_img_example
udf_img

Minimum Distance between line and plane (distlpl)

Function: Determines the minimum distance between a plane and line

Syntax: distlpl(Line Vector, Plane Cartesian)

Example:

udf_img_example
udf_img

Minimum Distance between line and point (distlp)

Function: Determines minimum distance between a line and point

Syntax: distlp(Line Vector, Point)

Example:

udf_img_example
udf_img

Minimum Distance between plane and point (distplp)

Function: Determines minimum distance between a plane and point

Syntax: distlp(Plane Equation, Point)

Example:

udf_img_example
udf_img

Intersection between 2 lines (ints2l)

Function: Determines the point of intersection & angle between two lines

Syntax: ints2l(Line Vector 1, Line Vector 2)

Example:

udf_img_example
udf_img

Intersection between 2 planes (ints2pl)

Function: Determines the line of intersection & angle between two planes

Syntax: ints2pl(Plane Cartesian 1, Plane Cartesian 2)

Example:

udf_img_example
udf_img

Intersection between plane and line (intslpl)

Function: Determines the point of intersection & angle between line and plane

Syntax: intslpl(Line Vector, Plane Cartesian)

Example:

udf_img_example
udf_img

Create line with 2 points (line2p)

Function: Determines the equation of a line given two points

Syntax: line2p(Point 1, Point 2)

Example:

udf_img_example
udf_img

Create line with direction vector and point (linedp)

Function: Determines the equation of a line given a direction vector and point

Syntax: linedp(Direction Vector, Point)

Example:

udf_img_example
udf_img

Create plane with 3 points (plane3p)

Function: Determines the equation of a plane given three points

Syntax: plane3p(Point 1, Point 2, Point 3)

Example:

udf_img_example
udf_img

Create plane with normal and point (planenp)

Function: Determines the equation of a plane given a normal vector and a point

Syntax: planenp(Normal Vector, Point)

Example:

udf_img_example
udf_img

Plane formed by intersecting lines (planeintl)

Function: Determines the equation of the plane formed by two intersecting lines

Syntax: planeintl(Line Vector 1, Line Vector 2)

Example:

udf_img_example
udf_img

Probability



Sample Mean Confidence Interval (confint)

Function: Determines the confidence interval for the sample mean

Syntax: confint(Sample Mean, Population Standard Deviation, Sample Size, . confidence)

Example:

udf_img_example
udf_img

Hypothesis Testing (hyptest)

Function: Determines whether the null hypothesis should be rejected by calculating p-values

Syntax: hyptest() (You will be prompted for inputs)

Example:

udf_img_example
udf_img

Probability of Error (prerror)

Function: Determines the probability of Type I and Type II errors occuring

Syntax: prerror() (You will be prompted for inputs)

Example:

udf_img_example
udf_img

p-value (pval)

Function: Determines the p-value of a hypothesis test

Syntax: pval() (You will be prompted for inputs)

Example:

udf_img_example
udf_img


Download

UDF Files:

Note: Latest version is v2.1. for MM and v2.4 for SM. Please ensure that the version you install is up to date.

Latest Changes (v2.1 - v2.4)
  • Bug fixes to sm_linalg\intslpl and sm_linalg\ints2pl (fixed issues when letting z = t gave weird solution)

  • Bug fix to sm_linalg\dist2l (fixed parallel line detection)

  • Bug fix to sm_kin\suvat and sm_pr\prerror (fixed working out so it formated correctly)

  • Added working out to sm_linalg\ints2pl

  • Added E(X), Var(X), Sd(X) to mm_dpr/samplebinom and mm_dpr/samplehypergeo

  • Made sm_linalg\ints UDFs find acute angle, as that's what questions usually ask for

UDF Guides:

Mathematical Methods UDF Guide

Specialist Mathematics UDF Guide

Note: The latest version is v2.0. for SM and v2.1 for MM Please ensure that the version you install is up to date.

Version Updates & Mailing List

New version v2: New version released! 10 new UDFs :D also some bug fixes included. Asymtpote UDF issue with exponentials resolved!

Join our mailing list so you don't miss the latest updates :D sign up here

Program Bugs:

After extensive testing our beta testers identified only a few bugs, with the vast majority of the programs working fine! :D

While many of the programs worked fine for us, if you encounter any issues or difficulties, please contact us and we will try to help you out.

Bugs Unresolved:
  • nroots, nstps, npois don't work for non-polynomial functions, documentation has been updated to reflect this.

  • Domain and Range function does not handle parameters well

  • Domain and Range may give inaccurate results if the domain is not restricted for complicated functions.

  • Domain and Range function does not handle rational functions well. Beware of auto-simplification.

  • Domain and Range function may round undefined endpoints into defined endpoints.

bot-icon
  • Loading chatbot ...

send-button