General Mathematics UDF Guide

Version 1.3

LazyMath

Acknowledgements

A huge thank you to everyone who helped test the UDFs \mathfrak{S}

Contents

Data Anal	lysis	4
	Summary Statistics	4
	Dot Plot	5
	Histogram	6
	Frequency Table	7
	Inverse Normal	8
	Normal Bound	9
	Normal Solve	
	Line Solve	
	Linear Regression	
	Linear Transformations	
	Residuals	14
	Mean Smoothing	15
	Median Smoothing	16
	Seasonal Data	17
	Significant Figures	

Recursion	and Financial Modelling	21
	Recurrence Relation	21
	Recurrence Relation Step	22
	Amortisation Table	23
	Number of Payments	24
	Finance Solver	25
Matrices .		26
	Communication Matrix	26
	Analyse Dominance	28
	Dominance Solve	29
	Square Root Matrix	30
	Outcomes	31
	Leslie Matrix	33
	Leslie Table	34
	Steady State	35
	Transition Table	36
	Inverse Transition	38

Data Analysis

Summary Statistics

Determines the quartiles, fences, mean, and standard deviation of the input data.

Syntax

sum_stats(Data)

Where, Data represents a list containing the data to be analysed.

Example

The number of points a pro gamer scores on Flappy Bird over 10 games is shown in the table below.

Game	1	2	3	4	5	6	7	8	9	10
Score	12	47	58	73	20	31	10	22	17	250

Determine the quartiles, fences, and outliers (if any).

score_data

summary_stats(score_data)

 ${12.,47.,58.,73.,20.,31.,10.,22.,17.,250.}$

Total = 10

Data Summary:					
"Minimum"	10.				
"Q1"	17.				
"Q2"	26.5				
"Q3"	58.				
"Maximum"	250.				
"IQR"	41.				
"Lower Fence"	-44.5				
"Upper Fence"	119.5				
"Range"	240.				
"Mean"	54.				
"Standard Dev"	71.972				
"Skew"	"Positive"				
Warning: Skew may be inaccurate					

▶Possible outliers:

{250.}

Sorted data saved as data.summary_stats

Warning: Skew may be inaccurate

Contact lazymath2024@gmail.com

Dot Plot

Determines the summary statistics of an input dot plot.

Syntax

dot_plot(Data)

Where, *Data* represents a matrix with the *x*-values in the top row, and the *y*-values in the bottom row.

Example

The dot plot shows the times, in seconds, of 40 runners in the qualifying heats of their 800 m club

championship.

Source: VCAA 2023 General Mathematics Written Examination 1 Question 1

Determine the median and skew of the data.

	146	142	142	141	140	120	1 2 0	137	136	135	1134
	1	145	142	1	2	2	4	6	11	8	ot_plot 3
Total = 40											
►Data Summary:											
["Minimum" 134.]											
"Q1" 135.											
"Q2" 136.											
"Q3" 138.											
"Maximum" 146.											
"IQR" 3.											
"Lower Fence" 130.5											
"Upper Fence" 142.5											
"Range" 12.											
"Mean" 137.05											
"Standard Dev" 2.5715											
"Skew" "Positive"											
▶Possible outliers:											
{143.,146.}											
Sorted data saved as data.dot_pl											
Da											

Warning: Skew may be inaccurate. Contact

lazymath2024@gmail.com

Histogram

Determines the summary statistics of an input histogram.

Syntax

histogram(Data)

Where, *Data* represents a matrix with the *x*-values in the top row, and the *y*-values in the bottom row.

Example

The histogram below displays the distribution of *skull width*, in millimeters, for 46 female possums.

Source: VCAA 2022 Further Mathematics Written Examination 1 Question 1

 $histogram \begin{bmatrix} 49 & 50 & 51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 60 & 67 \\ 1 & 1 & 2 & 1 & 2 & 5 & 6 & 11 & 7 & 5 & 3 & 1 & 1 \end{bmatrix}, 1$

Total = 46
▶Data Summary:
["Minimum" "49–50"]
"Q1" "54–55"
"Q2" "56-57"
"Q3" "57-58"
"Maximum" "67–68"
"IQR" "2-4"
"Lower Fence" "48-52"
"Upper Fence" "60-64"
"Range" "17–19"
Approximate values:
"Mean" 56.326
"Standard Dev" 2.9235
"Skew" "Negative"
Warning: Skew may be inaccurate
▶Possible outliers:
{"49–50","67–68"}
Sample data saved as data.histogram

Warning: Skew may be inaccurate. Contact lazymath2024@gmail.com ©LazyMath General Mathematics

Frequency Table

Determines the frequency table of the input data list.

Syntax

freq_table(Data, Minimum, Bin Size)

Where,

Data represents a list containing the data

Minimum represents the starting point of the frequency table

Bin Size represents the size of each bin in the frequency table

Example

Determine the frequency table of the following data.

{35, 48, 45, 43, 38.2, 50, 39.8, 40.7, 40, 50, 35.4, 38.8, 40.2, 45, 45, 40, 43.3, 53.1, 35.6, 44.1, 34.8}

Start your table from 30 and use a bin size of 5.

 $freq_table(\{35, 48, 45, 43, 38, 2, 50, 39, 8, 40, 7, 40, 50, 35, 4, 38, 8, 40, 2, 45, 45, 40, 43, 3, 53, 1, 35, 6, 44, 1, 34, \$, 30, 5)$

Frequency	Table:	
"Interval "	"Frequency"	"Percentage"
"30-<35"	1.	4.7619
"35-<40"	6.	28.571
"40-<45"	7.	33.333
"45-<50"	4.	19.048
"50-<55"	3.	14.286
"Total"	21.	100.

Inverse Normal

Uses the 68-95-99.7% rule alongside the given mean and standard deviation to determine the values for

which Pr(X > x) = %p and Pr(X < x) = %p.

Syntax

norm_inverse(Mean, Standard Deviation, Percentage Probability)

Where,

Mean represents the mean of the normal distribution

Standard Deviation represents the standard deviation of the normal distribution

Percentage Probability represents the percentage probability of being less than or greater than a value

Example

The weight of dogs is normally distributed with a mean of 30 kg with a standard deviation of 3.4 kg.

Using the 68-95-99.7% rule, determine the weight which 16% of dogs are less than.

norm_inverse(30,3.4,16)

▶Given:
x̄ = 30 and sx = 3.4
▶Answer:
16% of values are less than 26.6
16% of values are greater than 33.4

Normal Bound

Uses the 68-95-99.7% rule to determine the cumulative percentage probability between two bounds, that

is, $Pr(x_1 < X < x_2)$ %.

Syntax

norm_bound(Mean, Standard Deviation, Lower Bound, Upper Bound)

Where,

Mean represents the mean of the normal distribution

Standard Deviation represents the standard deviation of the normal distribution

Lower Bound represents the lower bound in the probability expression

Upper Bound represents the upper bound in the probability expression

Example

The weight of dogs is normally distributed with a mean of 30 kg with a standard deviation of 3.4 kg.

Using the 68-95-99.7% rule, determine the percentage of dogs which weigh between 26.6 kg and 36.8 kg.

norm_	_bound	30,3.	4,26.	6,36.8)
-------	--------	-------	-------	---------

Given:
$\overline{\mathbf{x}} = 30 \text{ and } \mathbf{sx} = 3.4$
Answer:
81.5% of the values are between 26.6 and 36.8
Done

Contact lazymath2024@gmail.com

Normal Solve

Uses the 68-95-99.7% rule to determine the mean and standard deviation of a normal distribution, given

two probabilities, $Pr(X < x_1) = p_1\%$ and $Pr(X > x_2) = p_2\%$.

Syntax

normsolve(Lower, % Pr(Lower), Upper, %Pr(Upper))

Where,

Lower represents the value, x_1

% *Pr(Lower)* represents the percentage probability of $X < x_1$, in other words, p_1 %

Upper represents the value, x_2

% *Pr(Upper)* represents the percentage probability of $X > x_2$, in other words, p_2 %

Example

The mean and standard deviation for the average weight of dogs is unknown.

After conducting some measurements, scientists determined that:

- 2.5% of dogs weigh more than 36.8 kg
- 16% of dogs weigh less than 26.6 kg

Use the 68-95-99.7% rule to determine, in kilograms, the mean and standard deviation.

norm_solve(26.6,16,36.8,2.5)

Given:
16% of values are less than 26.6
2.5% of values are greater than 36.8
Determine the number of sx from $\bar{\mathbf{x}}$ using 68–95–99.7% rule:
26.6 is ⁻¹ sx from $\bar{\mathbf{x}}$
36.8 is 2 sx from $\bar{\mathbf{x}}$
Determine the equations:
$26.6 = \overline{\mathbf{x}} - \mathrm{sx}$
$36.8 = \overline{\mathbf{x}} + 2sx$
Solve equations simultaneously for $\bar{\mathbf{x}}$ and sx:
sx=3.4 and \bar{x} =30.

Line Solve

Determines the equation of the line passing through two input points.

Syntax

lin_solve(x1, y1, x2, y2)

Where, x1, y1, x2, y2 represent the x and y coordinates of the two points respectively

Example

Source: VCAA 2023 General Mathematics Examination 2 Question 7 & Question 8

Determine the equation for the least squares line.

 $lin_solve(16, 18, 34, 46)$ $y=1.5556 \cdot x - 6.8889$

Linear Regression

Determines the least squares line, R, R², and association between the explanatory variable and the

response variable.

Syntax

lin reg(EV, RV)

Where,

EV represents a list containing the values of the explanatory variable

RV represents a list containing the values of the response variable

Example

The amount of money a student earns from their stocks each year is shown in the table below.

Year	1	2	3	4	5	6	7	8
Amount (\$)	2.50	6.70	8.90	10.50	11.70	16.20	17.50	19.20

Determine the equation for the line of best fit of the data.

ev

{1.,2.,3.,4.,5.,6.,7.,8.}

rv

 $\{2.5, 6.7, 8.9, 10.5, 11.7, 16.2, 17.5, 19.2\}$

lin_reg(ev,rv)

Length = 8

▶Linear Regression:

"Equation"	<i>y</i> =2.3095· <i>x</i> +1.2571
"R"	0.98899
"R²"	0.9781
"Association "	"strong positive "
"Interpolation "	"1≤x≤8"

Linear Transformations

Determines the least squares line and R² of various transformations of the explanatory and response

variables. These include squaring, reciprocal, and log10.

Syntax

lin trans(EV, RV)

Where,

EV represents a list containing the values of the explanatory variable

RV represents a list containing the values of the response variable

Example

The amount of money a student earns from their stocks each year is shown in the table below.

Year	1	2	3	4	5	6	7	8
Amount (\$)	2.50	6.70	8.90	10.50	11.70	16.20	17.50	19.20

Determine the least squares line with $log_{10}(amount)$ as the explanatory variable.

ev

rv

{2.5,6.7,8.9,10.5,11.7,16.2,17.5,19.2}

{1.,2.,3.,4.,5.,6.,7.,8.}

lin_trans(*ev*,*rv*)

►Transfor	ms:	
["Trans"	"R²"	"Equation"
"x"	"0.9781"	"y=2.3095x+1.2571"
"X ² "	"0.9104"	"y=0.24168x ² +5.4871"
"y²"	"0.9556"	"y ² =52.617x-72.426"
"log(x)"	"0.9375"	"y=18.13log(x)+1.2126"
"log(y)"	"0.8464"	"log(y)=0.10845x+0.51181"
"X ⁻¹ "	"0.7640"	"y=-17.02x ⁻¹ +17.432"
"y-1"	"0.6002"	"y ⁻¹ =-0.0364x+0.29046"

13

Residuals

Determines the least squares line fit and the differences between the true values and predicted values.

Syntax

residual(EV, RV)

Where,

EV represents a list containing the values of the explanatory variable

RV represents a list containing the values of the response variable

Example

The amount of money a student earns from their stocks each year is shown in the table below.

Year	1	2	3	4	5	6	7	8
Amount (\$)	2.50	6.70	8.90	10.50	11.70	16.20	17.50	19.20

Determine the residual value for each year.

ev

rv

{1.,2.,3.,4.,5.,6.,7.,8.} {2.5,6.7,8.9,10.5,11.7,16.2,17.5,19.2}

residual(ev,rv)

"y"	"ŷ"	"Residual"
2.5	3.5667	-1.0667
6.7	5.8762	0.82381
8.9	8.1857	0.71429
10.5	10.495	0.00476
11.7	12.805	-1.1048
16.2	15.114	1.0857
17.5	17.424	0.07619
19.2	19.733	-0.53333

Contact lazymath2024@gmail.com

Mean Smoothing

Performs mean smoothing on the provided dataset and returns the result. Points which are marked with a

blank string indicate they are invalid.

Syntax

mean_smooth(Data, Size)

Where,

Data represents a list containing the data to be mean smoothed

Size represents the group size which is used in smoothing

Example

The number of sales made by a company for the first eight months of 2025 is shown in the table below.

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug
Sales	200	250	100	350	450	500	890	320

Determine the four-mean smoothed data, with centering.

data

{200.,250.,100.,350.,450.,500.,890.,320.}

 $mean_smooth(data,4)$

["x"	"v"
1.	"Ѽ"
2.	"()"
3.	256.25
4.	318.75
5.	448.75
6.	543.75
7.	"[]"
8.	"[]" ,

Median Smoothing

Performs median smoothing on the provided dataset and returns the result. Points which are marked with

a blank string indicate they are invalid.

Syntax

med_smooth(Data, Size)

Where,

Data represents a list containing the data to be median smoothed

Size represents the group size which is used in smoothing

Example

The number of sales made by a company for the first eight months of 2025 is shown in the table below.

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug
Sales	200	250	100	350	450	500	890	320

Determine the three-median smoothed data.

data

{200.,250.,100.,350.,450.,500.,890.,320.}

 $med_smooth(data,3)$

["x"	"y"
1.	"[]"
2.	200.
3.	250.
4.	350.
5.	450.
6.	500.
7.	500.
8.	"[]".

Seasonal Data

Determines the seasonal averages, seasonal indices, deseasonalised data, and the least square line fit of the deasonalised data. Rounding for each calculation step can be specified using the appropriate syntax.

Syntax

Case 1: Exact values

season(Data)

Where, *Data* represents the matrix containing the data, with each row representing one cycle and each column representing one period.

Note

In SACs and exams, you will have to round your answers at each stage. This case would be useful for checking your answers rather than obtaining the answers.

Case 2: Rounded values

season({"Data", Round_1, Round_2, Round_3, Round_4})

Where,

"Data" represents a string containing the name of the variable used to store the data

Round_l represents the number of decimal places to round the average of each cycle to

Round_2 represents the number of decimal places to round the seasonal indices to

Round_3 represents the number of decimal places to round the average of the seasonal indices to

Round_4 represents the number of decimal places to round the deseasonilised data to

Note

All of the above must be inputted in sequence as a list

Example

The sales data for a clothing store was tracked quarterly for three years.

Year	2025					2026				2027			
Quarter	1	2	3	4	1	2	3	4	1	2	3	4	
Sales	82	57	42	43	88	59	48	50	97	65	52	55	

- a. Calculate the sales average for each quarter. Give your answer correct to two decimal places.
- **b.** Calculate the seasonal indices for each sale. Give your answer correct to three decimal places.
- c. Calculate the average of the seasonal indices for each sale. Give your answer correct to two decimal places.
- d. Deseasonalise the data. Give your answer correct to the nearest whole number.
- e. Determine the least squares line fit for the deseasonalised data.

Case 1

data	82. 57. 42. 43. 88. 59. 48. 50. 97. 65. 52. 55.
season(data)	
	Season UDF:
	▶ Find averages for each cycle:
	["Season" 1. 2. 3. 4. "Avg"]
	"Cycle 1." 82. 57. 42. 43. 56.
	"Cycle 2." 88. 59. 48. 50. 61.25
	["Cycle 3." 97. 65. 52. 55. 67.25]
	▶ Find indicies and take their average:
	"Season" 1. 2. 3. 4.
	"Cycle 1." 1.4643 1.0179 0.75 0.76786
	"Cycle 2." 1.4367 0.96327 0.78367 0.81633
	"Cycle 3." 1.4424 0.96654 0.77323 0.81784
	Avg" 1.4478 0.98256 0.76897 0.80068
	Deseasonalise the data:
	["Season" 1. 2. 3. 4.]
	"Cycle 1." 56.638 58.012 54.619 53.705
	"Cycle 2." 60.782 60.048 62.421 62.447
	["Cycle 3." 66.998 66.154 67.623 68.692]
	▶Find LSR fit of deseasonalised data:
	y=1.3066x+53.019

Note: This may not provide the answers the marker will be looking for since it uses the exact value at

each stage rather than the rounded values. Contact

lazymath2024@gmail.com

©LazyMath General Mathematics

Case 2

data	82.	57.	42.	43.	
	88.	59.	48.	50.	
	97.	65.	52.	55.]	
season({ "data",2,3,2,0})					

▶Season UDF:

▶ Find averages for each cycle:

"Season"	1.	2.	3.	4.	"Avg"
"Cycle 1."	82.	57.	42.	43.	56.
"Cycle 2."	88.	59.	48 .	50.	61.25
"Cycle 3."	97.	65.	52.	55.	67.25
▶Find indici	es an	d tak	e thei	r ave	rage:
"Season"	1.		2.	3.	4.
"Cycle 1."	1.46	i4 1	.018	0.75	5 0.768
"Cycle 2."	1.43	57 0	.963	0.78	4 0.816
"Cycle 3."	1.44	2 0	.967	0.77	3 0.818
"Avg"	1.4	5	0.98	0.77	0.8
Deseasonal	ise tł	ie da	ta:		
"Season"	1.	2.	3.	4.	
"Cycle 1."	57.	58.	55.	54.	

"Cycle 2." 61. 60. 62. 63. "Cycle 3." 67. 66. 68. 69.

▶Find LSR fit of deseasonalised data: y=1.3007x+53.212

Significant Figures

Rounds an input number to a specific number of significant figures.

Syntax

sig_fig(Number, SF)

Where,

Number represents the number to round

SF represents the number of significant figures to round the number to

Example

Round the number 14.520010 to five significant figures.

Contact lazymath2024@gmail.com "14.520"

Recursion and Financial Modelling

Recurrence Relation

Determines the compound interest per annum, annuity payment, and perpetuity payment of the input recurrence relation in the form

$$V_{n+1} = aV_n + b$$

Syntax

recur_rel(R, Pmt, V₀, CpY)

R represents the coefficient in front of V_n , that is a in the equation above

Pmt represents the amount being added to V_n , that is b in the equation above

 V_0 represents the starting balance of the loan

CpY represents the number of periods per annum

Example

Let $E_o = $300\ 000$ and $E_{n+1} = 1.003E_n - 2159.41$

- **a.** Determine the compound interest per annum.
- **b.** Determine the monthly payment, in dollars, the investor would receive if they wanted the annuity to act as a perpetuity.

$recur_rel(1.003, -2159.41, 3.10^5, 12)$	
	Reducing Balance Loan
	Recurrence Relation:
	$V(n+1) = 1.003Vn-2159.41, V_0 = 300000$
	Interest:
	$I = (1.003 - 1) \times 12 \times 100 = 3.6$
	3.6% per annum, compounding monthly
	Payment: \$2159.41 per month
	▶Interest Only: \$900.00 per month

Source: VCAA 2024 General Mathematics Written Examination 2 Question 7

Recurrence Relation Step

Displays the lines of working required to work out V_n given a recurrence relation in the form.

$$V_{n+1} = aV_n + b$$

Syntax

recur_rel_step(R, Pmt, V₀, Iter)

R represents the coefficient in front of V_n , that is a in the equation above

Pmt represents the amount being added to V_n , that is b in the equation above

 V_0 represents the starting balance of the loan

Iter represents which term in the sequence we wish to determine

Example

Let $E_o = $300\ 000$ and $E_{n+1} = 1.003E_n - 2159.41$

Showing recursive calculations, determine the balance of the annuity after two months. Round your answer to the nearest cent.

```
Source: VCAA 2024 General Mathematics Written Examination 2 Question 7
```

Amortisation Table

Generates the amortisation table based on the input payment amount, frequency of payments, interest rate, and starting balance.

Syntax

amor_tbl(%I, Pmt, V₀, CpY, Iter)

Where,

%I represents the percentage compound interest per annum

Pmt represents the payment per period

 V_0 represents the starting balance of the loan

CpY represents the number of periods per annum

Iter represents the number of rows of the table you wish to generate

Example

Arthur invests \$600 000 in an annuity that provides him with a monthly payment of \$3973.00. Interest is calculated monthly at a rate of 0.42% per month.

Complete the first four lines of the amortisation table. Round all values to the nearest cent.

Source: VCAA 2023 General Mathematics Written Examination 2 Question 6

amor_tbl(0.42.12,-3973,6.10⁵,12,3)

	Recurrence Relation:										
	$R = 1 + 5.04 / (12 \times 100) = 1.0042$										
	$V(n+1) = 1.0042Vn - 3973, V_0 = 600000$										
Amortisation Table:											
	["No."	"Pmt"	"I"	"PR"	"Bal"						
	0	"0.00"	"0.00"	"0.00"	"600000.00"						
	1	"3973.00"	"2520.00"	"1453.00"	"598547.00"						
	2	"3973.00"	"2513.90"	"1459.10"	"597087.90"						
	3	"3973.00"	"2507.77"	"1465.23"	"595622.67"						
	Reducin	g Balance L	oan								

Number of Payments

Determines the number of payments which could be made to pay off the loan and the final payment amounts.

Syntax

final_pmt(%I, Pmt, V₀, CpY)

Where,

%I represents the percentage interest per period

Pmt represents the payment per period

 V_0 represents the starting balance of the loan

CpY represents the number of periods per annum

Example

Arthur borrowed \$30 000 to buy a new motorcycle.

Interest on this loan is charged at a rate of 6.4% per annum, compounding quarterly.

Arthur will repay the loan in full using quarterly repayments of \$1515.18. The final payment will differ

slightly from the previous repayments.

Determine the total cost of repaying the loan, the final payment, and the number of payments required to pay off the loan.

Source: VCAA 2023 General Mathematics Written Examination 2 Question 5

$$final_pmt$$
(6.4,-1515.18,3 \cdot 10⁴,4)

```
Reducing Balance Loan

I = 6.40%, Regular Pmt = $1515.18

PV = $30000.00

["No." "Final Pmt" "Total"

23 "3006.36" "36340.32"

24 "1515.04" "36364.18"]
```

Done

Contact lazymath2024@gmail.com ©LazyMath General Mathematics

Finance Solver

Solves for a particular parameter based on the input values provided

Syntax

finance_solve(N, %I, PV, Pmt, FV, CpY) N represents the number of payment periods %I represents the interest rate per annum PV represents the present value Pmt represents the payment per period FV represents the final value CpY represents the number of periods per annum

Example

Bob has a student loan is \$50,000 with an interest rate of 5.00% per annum, compounding monthly. Bob makes a payment of \$500 every month. After one year, what is the final balance of Bob's student loan?

finance_solve(12,5,-50000,500,x,12) 46418.6671483

Matrices

Communication Matrix

Determines the paths which the sender could use to communicate to the receiver. The rows represent the

senders, while columns represent receivers.

Syntax

com(Matrix, Start, End)

Where,

Matrix represents the communication matrix

Start represents the sender

End represents the receiver

Example

The communication matrix below shows the direct paths by which messages can be sent between two

people in a group of six people, U to Z.

		receiver						
		U	V	W	Х	Y	Ζ	
	U	0	1	1	0	1	1	
	V	1	0	1	0	1	0	
sender	W	1	1	0	1	0	1	
	Х	0	1	0	0	1	1	
	Y	0	0	1	1	0	1	
	Ζ	1	1	0	1	1	0	

Source: VCAA 2019 Further Mathematics Written Examination 1 Section B Module 1 Question 7

In how many ways can Y get a message to W?

©LazyMath General Mathematics

Example – Continued

com	0 1 1 0 0 1	1 0 1 1 0 1	1 0 0 1	0 1 0 1 1	1 1 0 1 0 1	1 0 1,5,3 1 1 0			
							["Pa	th" "F	Receivers"
							"Е	С"	1.
							"ED	BC"	3.
							"EF	BC"	3.
							"EF.	AC"	3.
							"EFD	BC"	4.
							"EDF	BC"	4.

Contact lazymath2024@gmail.com "EDFAC"

"EFABC"

"EFBAC"

"EDBAC"

"EFDBAC"

"EDFBAC"

"EDFABC" "Total: 13. " 4.

4.

4.

4.

5.

5.

5. "[]"

Analyse Dominance

Determines the two-step, and total dominance from the one-step dominance matrix.

Syntax

dom analyse(Matrix)

Where, Matrix represents the one-step dominance matrix.

Example

Five friends, Bhavi (B), Kai (K), Oscar (O), Sian (S) and Xavier (X), played a round-robin table tennis tournament. Each friend played each of the others once. Every game had a winner and a loser. The one-step dominance matrix constructed from the tournament's results is shown below.

A '1' in this matrix shows that the player named in that row defeated the player named in that column.

For example, the '1' in row 3, column 4 shows that Oscar defeated Sian.

Which one of the following tables shows the number of one-step and two-step dominances accumulated by each player in the tournament?

|--|

	0	1	0	1	0
	0	0	0	0	1
dom_analyse	1	1	0	1	0
	0	1	0	0	0
	1	0	1	1	0

•	-				
		Results:			
		"Player"	"Won"	"Los	t"]
		"A"	"B,D"	"C,E	2"
		"B"	"E"	"A,C,	D"
		"C"	"A,B,D'	' "E'	'
		"D"	"B"	"A,C,	E"
		"E"	"A,C,D'	' "B'	']
		▶Dominan	ce:		
		"Player"	"One"	"Two"	"Total"
		"A"	2	2	4
		"B"	1	3	4
		"C"	3	4	7
		"D"	1	1	2
		"E"	3	6	9

Contact lazymath2024@gmail.com

Dominance Solve

Determines the results matrix based off the one-step and two-step dominances of competitors. The

winners are the rows, and the losers are the columns.

Syntax

dom_solve(Step1, Step2)

Where, Step1 and Step2 are the one-step and two-step dominances respectively.

Example

Five staff members in Elena's office played a round-robin video game tournament, where each employee played each of the other employees once. In each game there was a winner and a loser. A table of their one-step and two-step dominances was prepared to summarise the results.

Staff member	One-step dominance	Two-step dominance
Ike (<i>I</i>)	3	5
Joelene (J)	3	4
Katie (K)	1	1
Leslie (L)	1	2
Mikki (M)	2	4

Consider the results matrix shown below.

A '1' in this matrix shows that the player named in that row defeated the player named in that column.

A '0' in this matrix shows that the player named in that row lost to the player named in that column.

Use all of the information provided to complete the results matrix.

Source: VCAA 2021 Further Mathematics Written Examination 2 Section B Module 1 Question 4

$dom_solve \begin{pmatrix} 3 \\ 3 \\ 1 \\ 1 \\ 2 \\ 2 \end{bmatrix} \begin{pmatrix} 5 \\ 4 \\ 1 \\ 1 \\ 2 \\ 4 \end{bmatrix}$				
	Results	Matrix:		
	$\begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}$	$ \begin{array}{ccc} 1 & 0 \\ 1 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{array} $		
	Results:			
	Player"	"Won"	"Lost"	
	"A"	"B,C,D"	"E"	
	"B"	"C,D,E"	"A"	
	"C"	"D"	"A,B,E"	
	"D"	"E"	"A,B,C"	
	"E"	"A,C"	"B,D"	

Square Root Matrix

Determines the square root of a matrix which was produced by multiplying two binary matrices together.

This can be used for finding the one-step dominance from the two-step dominance.

Syntax

sqrt mat(Matrix)

Where, Matrix represents squared matrix.

Example

A badminton competition is held between four players, Amanda (*A*), Ben (*B*), Carlos (*C*) and Darius (*D*). In the competition, each player competes in one game with each of the other three players. The matrix S^2 below shows the two-step dominance that each player has over the other players.

		loser				
		A	B	C	D	
$S^2 = winner$	A	0	2	1	0	
	B	0	0	0	0	
	С	0	0	0	0	
	D	0	1	0	0	

Source: VCAA 2017 Further Mathematics-NHT Written Examination 1 Section B Module 1 Question 7

Determine the one-step dominance matrix.

$sqrt_mat \begin{bmatrix} 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$				
	Resi	ults	Matrix:	
	0 1	1	1]	
	0 0	0	0	
	0 1	0	0	
	0 1	1	0]	
	Resi	ults:		
	["Play	/er"	"Won"	"Lost"
	"A	."	"B,C,D"	"None"
	"В	"	"None"	"A,C,D"
	"C	"	"B"	"A,D"
	"D	"	"B,C"	"A"

Outcomes

Determines the possible outcomes and final player rankings based off a given matrix.

Syntax

outcomes(Matrix)

Where, Matrix represents the current one-step dominance matrix with variables in place of blank spaces.

Note: You may enter the entire matrix, or just the upper triangle as a string. Both cases are shown below.

Example 1

Five competitors, Andy (*A*), Brie (*B*), Cleo (*C*), Della (*D*) and Eddie (*E*), participate in a darts tournament. Each competitor plays each of the other competitors once only, and each match results in a winner and a loser.

The matrix below shows the results of this darts tournament.

There are still two matches that need to be played.

			loser						
		A	В	С	D	E			
	A	0		0	1	0			
	B		0	1	0	1			
winner	C	1	0	0		1			
	D	0	1		0	0			
	E	1	0	0	1	0			

A '1' in the matrix shows that the competitor named in that row defeated the competitor named in that column.

For example, the '1' in row 2, column 3 shows that Brie defeated Cleo.

A '...' in the matrix shows that the competitor named in that row has not yet played the competitor named in that column.

The winner of this darts tournament is the competitor with the highest sum of their one-step and two-step dominances.

Which player, by winning their remaining match, will ensure that they are ranked first by the sum of their one-step and two-step dominances?

Source: VCAA 2020 Further Mathematics Written Examination 1 Section B Module 1 Question 9

	0	x	0	1	0
	x	0	1	0	1
outcomes	1	0	0	x	1
	0	1	x	0	0
	1	0	0	1	0

Win "	"BD"	"BC"	"AD"	"AC"
"A"	5	5	1	3
"B"	1	1	1	2
"C"	3	2	1	1
"D"	2	3	1	5
["E"	3	3	1	3

Example 2

Instead of entering the entire matrix, we can enter just the upper triangle in the same fashion inside a

string. You can obtain a string by pressing " $Ctrl + \times$ ".

Using the same question as in **Example 1**, we see that the upper triangle going from top to bottom and left to right is given by "x010 101 x1 0".

· · · · · · · · · · · · · · · · · · ·					
	["Win"	"BD"	"BC"	"AD"	"AC"
	"A"	5	5	1	3
	"B"	1	1	1	2
	"C"	3	2	1	1
	"D"	2	3	1	5
	["E"	3	3	1	3
					D

outcomes("x010101x10")

Leslie Matrix

Determines the Leslie matrix based off the given fertility and survival rates.

Syntax

leslie_mat(fertility_rates, survival_rates)

Where,

fertility_rates is a list containing the fertility rates of all age groups.

survival_rates is a list containing the survival rates of all age groups except the final age group.

Example

Question 30

Data has been collected on the female population of a species of mammal located on a remote island.

The female population has been divided into three age groups, with the initial population (at the time of data collection), the birth rate, and the survival rate of each age group shown in the table below.

	Age group (years)							
	0-2	2–4	4-6					
Initial population	2100	6400	4260					
Birth rate	0	1.8	1.2					
Survival rate	0.7	0.6	0					

The Leslie matrix (L) that may be used to model this particular population is

Source: VCAA 2024 General Mathematics Written Examination 1 Question 30

0.	1.8	1.2
0.7	0.	0.
0.	0.6	0.

Leslie Table

Determines the state table up to a specified number of generations.

Syntax

leslie(L, R0, Iter)

Where,

L represents the Leslie matrix which models the population.

R0 represents the initial state matrix.

Iter represents the number of rows in the table you wish to generate.

Example

Question 11 (3 marks)

A population of a native animal species lives near the construction site.

To ensure that the species is protected, information about the initial female population was collected at the beginning of 2023. The birth rates and the survival rates of the females in this population were also recorded.

This species has a life span of 4 years and the information collected has been categorised into four age groups: 0-1 year, 1-2 years, 2-3 years, and 3-4 years.

This information is displayed in the initial population matrix, R_0 , and the Leslie matrix, L, below.

i.	70]	[0.4	0.75	0.4	0]
D	80	T	0.4	0	0	0
$R_0 =$	90	L =	0	0.7	0	0
	40		0	0	0.5	0

ii. complete the following table, showing the initial female population, and the predicted female population after one year, for each of the age groups.

1 mark

Source: VCAA 2024 General Mathematics Written Examination 2 Question 11

$leslie \begin{bmatrix} 0.4\\0.4\\0\\0 \end{bmatrix}$	0.75 0 0.7 0	0.4 0 0 0.5	$ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 70 \\ 80 \\ 90 \\ 40 \end{bmatrix}, 1 $						
				▶State Ta	ble:				
				Age"	"1"	"2"	"3"	"4"	"Total "]
				"Initial "	70.	80.	90.	40.	280.
				"Gen 1"	124.	28.	56.	45.	253.
				▶Long Te	rm Deo	cay:			
				Common	ratio: (.8832	23268	347	
				11.67673	153% d	ecrea	se		
				▶Long Te	rm Pro	portic	ons:		
				["Age"	"1"		2"	"3"	"4"]
				Prop."	0.4963	3 0.2	2248	0.178	0.1008

Steady State

Determines the steady state matrix using the transition matrix and the addition matrix.

Syntax

steady_state(T, B)

Where,

T represents the transition matrix.

B represents the addition matrix.

Example

Question 27

The following transition matrix, T, models the movement of a species of bird around three different locations, M, N and O from one day to the next.

this day

$$M \quad N \quad O$$

 $T = \begin{bmatrix} \frac{1}{3} & 0 & \frac{9}{10} \\ \frac{1}{3} & 1 & \frac{1}{10} \\ \frac{1}{3} & 0 & 0 \end{bmatrix} O$
 M next day

Which one of the following statements best represents what will occur in the long term?

- A. No birds will remain at location M.
- **B.** No birds will remain at location *N*.
- C. All of the birds will end up at location M.
- D. All of the birds will end up at location O.
- E. An equal number of birds will be at all three locations.

Source: VCAA 2023 General Mathematics Written Examination 1 Question 27

$$steady_state \begin{pmatrix} \frac{1}{3} & 0 & \frac{9}{10} \\ \frac{1}{3} & 1 & \frac{1}{10} \\ \frac{1}{3} & 1 & \frac{1}{10} \\ \frac{1}{3} & 0 & 0 \\ \end{pmatrix}, 0 \qquad \begin{bmatrix} 0. \\ 1. \\ 0. \end{bmatrix}$$

Transition Table

Determines the state table up to the specific number of generations using the initial state matrix.

Syntax

transition(T, R0, B, Iter)

Where,

T represents the transition matrix.

R0 represents the initial state matrix.

B represents the addition matrix.

Iter represents the number of rows in the table you wish to generate.

Example

To encourage more construction workers (C) to stay, the construction company has given workers an incentive to move into the job of foreman (F).

Matrix R below shows the ways in which staff are expected to change their jobs from year to year with this new incentive in place.

$$R = \begin{bmatrix} 0.4 & 0.2 & 0 & 0 \\ 0.4 & 0.2 & 0.4 & 0 \\ 0 & 0.2 & 0.3 & 0 \\ 0.2 & 0.4 & 0.3 & 1 \end{bmatrix} \begin{bmatrix} C \\ M \\ M \\ L \end{bmatrix}$$

The site always requires at least 330 construction workers.

To ensure that this happens, the company hires an additional 190 construction workers (C) at the beginning of 2024 and each year thereafter.

The matrix V_{n+1} will then be given by

1 mark

1 mark

- c. How many more staff are there on the site in 2024 than there were in 2023?
- d. Based on this new model, the company has realised that in the long term there will be more than 200 foremen on site.In which year will the number of foremen first be above 200?

Source: VCAA 2024 General Mathematics Written Examination 2 Question 12

Example – Continued

transition	0.4 0.4 0 0.2	0.2 0.2 0.2 0.4	0 0.4 0.3 0.3	$\begin{array}{c} 0 \\ 0 \\ 50 \\ 0 \\ 1 \\ 0 \\ 1 \end{array} \begin{vmatrix} 330 \\ 50 \\ 10 \\ 1 \\ 0 \end{vmatrix} $	90 0 0,4 0				
	-			▶State Tal	ble:				
				["Group"	"A"	"B"	"C"	"D"	"Total "]
				"Initial "	330.	50.	10.	0.	390.
				"Iter 1 "	332.	146.	13.	89.	491.
				"Iter 2"	352.	167.2	33.1	217.7	552.3
				"Iter 3"	364.24	187.48	43.37	364.91	595.09
				["Iter 4 "	373.19	200.54	50.51	525.76	624.24
				Death/Al	osent Gro	oup Detec	ted		
				Total does	not inclu	ide Grou	рD		
				▶System's	stability:				
				System do	es not sta	abilise			

Inverse Transition

Determines the state table from the given current generation, current state matrix, transition matrix, and

addition matrix.

Syntax

transition_inv(T, Rn, B, Iter)

Where,

T represents the transition matrix.

Rn represents the current state matrix.

B represents the addition matrix.

Iter represents the current generation.

Example

Question 32

A large sporting event is held over a period of four consecutive days: Thursday, Friday, Saturday and Sunday.

People can watch the event at four different sites throughout the city: Botanical Gardens (G), City Square (C), Riverbank (R) or Main Beach (M).

Let S_n be the state matrix that shows the number of people at each location n days after Thursday. The expected number of people at each location can be determined by the matrix recurrence rule

$$S_{n+1} = TS_n + A$$

$$\begin{aligned} & \text{this day} \\ G & C & R & M \\ \text{where} & T = \begin{bmatrix} 0.4 & 0.2 & 0.4 & 0 \\ 0.4 & 0.1 & 0.3 & 0.3 \\ 0.1 & 0.4 & 0.1 & 0.2 \\ 0.1 & 0.3 & 0.2 & 0.5 \end{bmatrix} \stackrel{G}{M} \text{ next day} \quad \text{and} \quad A = \begin{bmatrix} 300 \\ 200 \\ 100 \\ 300 \end{bmatrix} \stackrel{G}{M} \\ \text{Given the state matrix} \quad S_3 = \begin{bmatrix} 5620 \\ 6386 \\ 4892 \\ 6902 \end{bmatrix} \stackrel{G}{M} \\ \end{aligned}$$

the number of people watching the event at the Botanical Gardens (G) from Thursday to Sunday has

Source: VCAA 2024 General Mathematics Written Examination 1 Question 32

Contact lazymath2024@gmail.com

transition_inv	$\begin{bmatrix} 0.4 \\ 0.4 \\ 0.1 \end{bmatrix}$	0.2 0.1	0.4 0.3	$\begin{bmatrix} 0 \\ 0.3 \end{bmatrix} \begin{bmatrix} 5 \\ 6 \end{bmatrix}$	5620 5386	$\left \begin{array}{c} 300 \\ 200 \\ 100 \end{array} \right $,3			
	0.1	0.4	0.1	0.2 [2 0.5] [6	1892 5902][100][300				
	▶State Table:									
				["Grou	р"	"A"	"B"	"C"	"D"	"Total "]
				"Initia	1 "	4924.	4732.	6540.	4904.	21100.
				"Iter 1	. "	5832.	6076.	4120.	5972.	22000.
				"Iter 2	2 ''	5496.	6168.	4720.	6516.	22900.
				"Iter 3	3"	5620.	6386.	4892.	6902.	23800.]
										Done